viernes, 24 de diciembre de 2010

sábado, 27 de noviembre de 2010

Cono truncado

El cono truncado o tronco de cono es el cuerpo geométrico que resulta al cortar un cono por un plano paralelo a la base y separar la parte que contiene al vértice.

Elementos del cono truncado



  • La sección determinada por la corte es la base menor.

  • La altura es el segmento que une perpendicularmente las dos bases

  • Los radios son los radios de sus bases.

  • La generatriz es el segmento que une dos puntos del borde de las dos bases.


Queda determinado por los radios de las bases, R y r, la altura, h, y la generatriz, g, entre las cuales se da la siguiente relación:
g^2 = \left(R - r\right)^2 + h^2
El área lateral de un tronco de cono se puede hallar resolviendo la siguiente ecuación:


AL = \pi \left(R + r\right)g
El área de un tronco de cono (el área lateral más el área de las circunferencias superior e inferior) se puede hallar mediante la fórmula:


A = \pi \left[(R + r\right)g + R^2 + r^2]
El volumen de un tronco de cono se puede hallar utilizando la siguiente fórmula:

V = \pi (R^2 + r^2 + Rr) \cdot h/3 \,
                                                                                                                   Publicado por: Pierina Aguilar

miércoles, 24 de noviembre de 2010

jueves, 11 de noviembre de 2010

¿Por qué se divide el día en horas y éstas en minutos y segundos?

Muchas de nosotros estamos llenos de dudas y preguntas y  estas muchas veces sin una respuesta clara y una de las preguntas que hace mucho me hice fue sobre los dias , en realidad el porqué de su existencia , quiero compartiles algo que encontre mientras buscaba algunas páginas , espero que les sea de su agrado :D




¿Por qué se divide el dia en horas y éstas en minutos y segundos? 
 

 Y más concretamente… ¿por qué en 24 horas? ¿Y por qué las horas en 60 minutos y los minutos en 60 segundos?

La Tierra tarda un cierto periodo de tiempo en completar un giro sobre su propio eje. Este periodo de tiempo recibe el nombre de día y está dividido en dos periodos de doce horas cada uno.
Esta división del día en 24 horas la adoptaron los romanos de los antiguos egipcios, que tenían un calendario basado en treinta y seis estrellas que aparecían alternativamente justo a la puesta del Sol, a medida que transcurría el año. En el intervalo de una noche aparecían sucesivamente doce de estas estrellas, lo que hizo que se dividiera el periodo de oscuridad en doce partes. Por similitud también fraccionaron en doce partes el tiempo de luz solar.
La mitología explicó el fenómeno con las Horas, “las doce hermanas” —que en un principio fueron tres: Talo, Carpo y Auxo—, que eran divinidades griegas hijas de Zeus y Temis, que servían a los dioses principales y guardaban las puertas del Olimpo. Regían el orden de la naturaleza y determinaban la fertilidad de la tierra.
El mundo clásico también adoptó —merced a la ocupación persa del territorio que anteriormente había pertenecido a Alejandro Magno— los estudios astronómicos del pueblo babilónico. Éstos utilizaban el sistema sexagesimal para sus complicados cálculos astronómicos y por ellos tenemos horas de sesenta minutos y minutos de sesenta segundos.
Cada una de las horas se divide a su vez en minutos (de minutus, ‘pequeño’ en latín) y éstos lo hacen a su vez en segundos (de secundus, ‘que sigue a lo primero’, en latín).

¿Para qué sirven las matemáticas en la vida cotidiana?

Ante la pregunta que se nos plantea hemos decidido indagar en diversas fuentes de información para llegar a conocer lo que otras personas piensan sobre el tema.Para ello hemos realizado una entrevista a niños de diferentes edades, los cuales han respondido de la siguiente manera:

         “Claro que sirven para la vida. Sirven para sumar y porque nos enseñan los números. Si no yo no sabría que una cosa cuesta por ejemplo cien pesetas”. Rosa (6º de Primaria).
       “No, no valen pa´ na´ . Yo eso de las fracciones no me entero. Un cuarto, tres doceavos, me voy a comer un octavo de tarta. Yo no digo un octavo. ¡Yo digo un TROZO DE TARTA!.” Lola. (4º de Primaria)
       “Si, si valen. Aunque yo cuando voy a comprar cuento con los dedos y por duros. Esto un duro y dos duros, tres duros. ¿Tres duros y son...15 pesetas?. Pero eso yo lo hago con mi cabeza no con las matemáticas. Con cuentas y todo eso.” Antonio (3º de Primaria)
       “Pero eso son cuentas. Cuentas mentales. ¡Claro que valen!. Tu vas a un sitio y no te engañan si sabes matemáticas. A mi abuela la engañan y a mi no.” María (6º de Primaria)
       “Si lo de los números y sumar si vale. Pero ¿para qué valen las raíces cuadradas?. Mira, quiero la raíz cuadrada de 81 chicles... y te mandan a la mierda.” Pedro (6º de Primaria)
       “Si y yo que estoy dando las potencias. Quiero 34 chicles. ¿Cuánto es 34? 81.¡¡Vale, vale, quiero 34 chicles!!.” Araceli (6º de Primaria)

De estas anotaciones creemos relevante resaltar que;

*      Es evidente que los niños consideran como dos campos distintos e inconexos: las matemáticas escolares, entendidas de forma científica, y las matemáticas de la vida cotidiana.
*      Algunos contenidos matemáticos son reconocidos fácilmente aplicados a la práctica, mientras que otros se prestan menos al reconocimiento o toma de conciencia.
*      La motivación es mayor si le encuentran funcionalidad a los contenidos matemáticos en su contexto inmediato. Por lo tanto, sería recomendable crear en los niños la necesidad de acudir a la matemática para encontrar solución a los problemas cotidianos.
*      Sería necesario replantear la secuenciación de los contenidos matemáticos en función de la realidad y características contextuales. Evitando la parcelación en cuanto a su tratamiento y apostando por su encadenamiento significativo (es decir, unos contenidos lleven a otros, se parta de lo asimilado por los niños antes de comenzar a trabajar un nuevo aspecto matemático,...).
Todas estas ideas van a repercutir en la práctica educativa.

Al respecto otros autores aportan ...

... Interesantes reflexiones sobre el tema que nos ocupa:
Kamii, por ejemplo, exalta la necesidad de aportar conocimientos sobre la realidad a partir de la cual el niño construirá su conocimiento, estableciéndose necesario modificar la planificación de un día típico en el porqué y en el cómo, haciendo hincapié en las actividades de conocimiento físico y en los juegos de grupo.
Vasco distingue que el fallo de la  matemática moderna se debe a la falta de similitud entre el sistema conceptual de los profesores y el de los autores de los libros de texto, y el sistema conceptual de los niños. Hecho que contradice lo que la LOGSE (1/1990 del 3 de Octubre) regula; promulgando que “el área de matemáticas acoge un valor funcional como conjunto de procedimientos para resolver problemas en diversos campos, para poner de relieve aspectos y relaciones de la realidad y para anticipar y predecir hechos y situaciones o resultados antes de que se produzcan o se observen”.
Podemos destacar la línea común de todas estas aportaciones: la necesidad de facilitar la relación entre matemáticas escolares y cotidianas.

Si existen, pero...

Cuando seamos capaces de construir un puente entre las matemáticas y la vida diaria conseguiremos ser conscientes de esta existencia.
Algunas de las vías para llegar a esta construcción son, entre otras:
*      técnica role play: dramatizaciones en clase de situaciones de la vida cotidiana en las que sea necesaria la práctica matemática.
*      Responsabilidades matemáticas: administración de materia, creación de comisiones para reparto de tareas, gestión para viaje de fin de curso,...
*      Partir de las aportaciones que hacen los niños de cómo relacionan las matemáticas de la vida cotidiana en la escuela.

                                                                                                                    Publicado por: Pierina Aguilar

lunes, 8 de noviembre de 2010

Algunos acertijos matematicos...

Algunos meses tienen 31 días, otros solo 30. ¿Cuantos tienen 28 días?
(Todos












El alcalde de una cárcel informa que dejara salir de la prisión a una persona al azar para celebrar que hace 25 años que es alcaide.
Eligen a un hombre y le dicen que quedara libre si saca de dentro de una caja una bola blanca, habiendo dentro 9 bolas negras y solo 1 blanca.
El prisionero se entera por un chivatazo que el alcaide pondrá todas las bolas de color negro, al día siguiente le hace el juego, y el prisionero sale en libertad.
¿Cómo ha conseguido salir de la cárcel si todas las bolas eran negras? 

(El prisionero al sacar la bola, la mira, la guarda sin que nadie la vea y dice que es blanca.
Enseñala, dice el alcaide, a lo que le responde: No es necesario, mira el resto de las bolas, la blanca no está en la caja, es la mia)




La mitad de dos mas dos ¿son tres?
(La mitad de dos es uno, y uno mas dos son tres)







 


¿Cuántas veces podría restarse el número 1 del número 1111?
(Una vez, pues entonces el número será 1110)





En una determinada casa las dos alas del tejado tienen diferente inclinación; una ala tiene una inclinación de 60º y la otra de 70º. Supongamos que un gallo pone un huevo exactamente en la cumbre. ¿Hacia quá lado del tejado caería el huevo?
(Los gallos no ponen huevos)









En una línea de ferrocaril, el tendido tiene doble vía excepto en un túnel, que no es lo bastante ancho para acomodar ambas. Por ello, en el túnel, la línea es de vía simple. Una tarde, entró un ten en el túnel marchando en un sentido, y otro tren en el mismo túnel, pero en sentido contrario. Ambos iban a toda velocidad; y sin embargo no llegaron a colisionar. Explíquelo.
(Uno de los trenes entró en el túnel una hora más tarde que el otro)


¿Es posible mediante cinco cifras impares sumar 20?
(Sí: 1+1+5+13=20)







En el espacio aéreo se cruzan un avión comercial y un caza militar. Con estos datos, ¿podemos saber cómo se hablan los pilotos?
(Por radio)









Espero que les haya gustado (los que no se han dado cuenta, las respuestas estan en el parentesis) 

Publicado por: José Pohl

Nunca lo había pensado así



hoy estaba viendo un video, era un poco aburrido porque no tenía música ni nada pero me parecio rarísimo el resultado que salía ahi, así que se los mostraré es una forma diferente de ver las potencias de nueve.



32=9
33=27--> 2 + 7 = 9
34=81--> 8 + 1 = 9
35=243--> 2 +4 + 3 = 9
36=729 --> 7 + 2 +9 = 18--> 1 + 8 = 9
37=2187--> 2 + 1 + 8 + 7 = 18--> 1 + 8 = 9
38=6165--> 6 + 1 + 6 + 5 = 18--> 1 + 8 = 9
39=19683--> 1 + 9 + 6 + 8 + 3 = 27--> 2 + 7 = 9
Realmente raro, no lo creí cuando lo vi :)
comenteen:D


Publicado por: Sofía Nieto


Coincidencias numéricas





Primero con el número 33:


33 mineros quedaron atrapados en el derrumbe de la mina San Jose el 5 de agosto de 2010.

La fecha en que se recibió la noticia de que estaban vivos (22/08/10) a través de esa nota suma 33 (22+8+2+0+1+0) y en el año, es la semana 33
La excavación empieza 33 días después del derrumbe
Fueron rescatados el día 13/10/10, al sumar la fecha da 33
La cobertura estuvo a cargo de 350 medios de 33 países
Para trasladarse del campamento Esperanza hasta el hospital se demoraron 33 minutos
El costo total de la operación de rescate fue de 33 millones de dólares

Ahora con el número 3

La Santísima Trinidad está compuesta por tres personas distintas: el Padre, el Hijo y el Espíritu Santo.
Cuando nació Jesús lo fueron a visitar 3 Reyes Magos
le hicieron TRES regalos: ORO, INCIENSO Y MIRRA.
Jesús resucitó a 3 personas, fue negado 3 veces por Pedro y visitó Jerusalén en 3 ocasiones.
Jesús hizo 33 milagros.
Para la ejecución de los Mártires del Gólgota, se erigieron TRES Cruces en el Cerro del Calvario; tres clavos los sujetaron a cada uno en la Cruz.
Jesús murió a los 33 años a las 3 de la tarde.
Hubo 3 horas de tinieblas cuando estaba en la cruz y resucitó tras permanecer 3 días y 3 noches en el sepulcro. “Porque así como 3 días y 3 noches estuvo Jonás en el vientre de un gran pez, también 3 días y 3 noches estará el Hijo del hombre en las entrañas de la tierra”, anunciaban las Sagradas Escrituras.


Interesante no?    ;-)

                                                                                                  Publicado por: Giorgio Baglietto

miércoles, 3 de noviembre de 2010

Ahora un poquito de R.M

El matemático ignorante:

En las aulas de cierta facultad de Matemáticas, nos podemos encontrar a un extraño personaje. Cierto día, me confesó que tan sólo sabía multiplicar y dividir por 2.
- A pesar de todo, me dijo, puedo multiplicar rápidamente números de dos cifras.
Le propuse que multiplicara 75 por 38.
Tomó una hoja de papel y escribió a la izquierda 75 y a la derecha 38. Luego inició sus cálculos:
- La mitad de 75 es 37, ¿no es así?.
- No -le dije- es 37'5.
- De acuerdo, pero no sé trabajar con decimales, así que no los pongo.
Escribió 37 y, repitiendo el proceso, dividió por dos y obtuvo, a pesar de mis protestas, 18, 9, 4, 2 y finalmente 1.
Después multiplicó 38 por dos. El resultado, 76, lo escribió en la fila inferior. Volvió a multiplicar por dos y obtuvo 152, 304, 608, 1216 y 2432.
Al final tenía escrito,
75
38
37
76
18
152
9
304
4
608
2
1216
1
2432
 
Me dijo que los números pares de la columna de la izquierda no servían de nada, así que los tachó (junto con el número que tenían a su derecha) con lo que quedó
 
75
38
37
76
9
304
1
2432
 
Sumando los números de la columna de la derecha obtuvo: 38+76+304+2432=2850, que es el resultado correcto. Probé con otros números y también funcionaba el método.

 
¿Sabrías dar una explicación matemática?.

Publicado por: Pierina Aguilar

El famoso cubo de rubik


Estoy seguro que todos hemos jugado alguna vez con el famoso cubo de colores que si es desarmado y entreverado mucho es muy complicado de armarlo nuevamente; pues aquí les muestro una nueva versión del cubo
Este nuevo cubo ha sido lanzado en Japón y no esta hecho en base a colores sino en formas desvariadas y son espejos




Ojala pronto llegue a Perú para poder probarlo!


Publicado por: Alvaro Canales

Las matematicas en la medicina

Muchos de nosotros hemos escuchado que las matematicas nos serviran para la vida diaria , pues bien una prueba más que las matematicas nos sirven día a día es este dato curioso que encontré hacerca del cancer y su relacion con las matematicas , espero que sea de su agrado :D




Aunque a primera vista pareciera que nada tienen que ver con la lucha contra el cáncer, las matemáticas son un instrumento que puede ser aprovechado para revelar los secretos de la metástasis (diseminación de un tumor primario maligno, generalmente por vía sanguínea o linfática, a órganos distantes).

Con base en ecuaciones diferenciales, trata de averiguar la manera en que la angiostatina, una sustancia antiangiogénica, controla la metástasis.
Para describir cómo evolucionan las células del tumor, se desarrolló una primera ecuación diferencial parcial, en que la variable fue la densidad de células cancerosas. Una segunda ecuación dio seguimiento a las células del endotelio, que activan la vascularización y la aparición de la metástasis. Y con una tercera se expresó la actividad de la angiostatina, capaz de inhibir la proliferación tumoral.

Publicado por: Maria Fernanda Guembes

jueves, 28 de octubre de 2010

El gol de David beckham y las matematicas

Hola a todos:
Buscando en internet acerca de las matematicas y los deportes; encontre este video:


Conclusión:

Las matemáticas y la fisica estan muy ligadas al fútbol, ya que se esta usando el "movimiento parabolico" aprendido en el segundo bimestre en Fisica, pero tambien matematica geometrica ya que una parábola es el lugar geométrico de los puntos equidistantes de una recta dada, llamada directriz, y un punto fijo que se denomina foco.

Comenten xD


Publicado por: José Pohl

Algunas curiosidades divertidas =P

NÚMERO SECRETO:

Pida a un amigo que escriba un número de dos cifras en secreto, que lo multiplique por 10 y del resultado reste un múltiplo de 9 inferior o igual a 81. Pídale el resultado. Si es de tres cifras, tome las dos primeras y sume la última; si son dos, súmelas entre sí, el resultado que dé es el número secreto.

CÓMO DEMOSTRAR CUALQUIER COSA: 

Bertrand Russell estaba tratando sobre los enunciados condicionales y sosteniendo que un enunciado falso implica cualquier cosa, todo. Un filósofo escéptico le preguntó:
-¿Quiere usted decir que si 2 + 2 = 5, entonces es usted el Papa?
Russell contestó afirmativamente y dio la divertida "prueba" que sigue:
- Si suponemos que 2 + 2 = 5, entonces seguramente estará usted de acuerdo en que si restamos 2 de cada lado de la ecuación, nos da 2 = 3.
Invirtiendo los términos, tenemos que 3 = 2 y restando 1 de cada lado, nos da 2 = 1.
De modo, que como el Papa y yo somos dos personas, y 2 = 1, entonces el Papa y yo somos uno.
Luego, yo soy el Papa.


Ahora unos chistes matemáticos :-)


Estaba Jesús predicando en el monte Sinaí y dijo a sus discípulos:
y = ax2 + bx + c
¿Y eso qué es? Dijo uno de los discípulos. 
A lo que Jesús respondió: ¡Una parábola!

¿Qué es un niño complejo?
Un niño con la madre real y el padre imaginario.




¿Por qué se suicidó el libro de matemática?
 Porque tenía demasiados problemas.

 

- ¿A qué distancia esta Nueva York de Philadelphia ? 
- Unas 120 millas.
- ¿Y a qué distancia esta Philadelphia de Nueva York ?
- ¡Pues lo mismo, 120 millas!
- No necesariamente.
- De la Navidad al Año Nuevo hay 7 dias, pero del Año Nuevo a la Navidad hay casi un año.


El 33 % de los accidentes mortales involucran a alguien que ha bebido. Por tanto, el 67 % restante ha sido causado por alguien que no había bebido. A la vista de esto, está claro que la forma más segura de conducir es ir borracho y a toda velocidad.


 
La tasa de natalidad es el doble que la tasa de mortalidad; por lo tanto, una de cada dos personas es inmortal.


Publicado por: Giorgio Baglietto

Algo curioso.

Holaa a todos :D

Aqui les presento algo que cuando me puse a analizar me parecio interesante.



Quién no ha escuchado hablar sobre rostros simetricos?, Te da una idea de un rostro perfecto tal vez... pero, la verdadera definición de simetria vendría a ser que los objetos estan ubicados exactamente en correspondencia a un eje, esos objetos vendrían a ser la nariz, los ojos, etc. Ustedes pensarán que tiene que ver esto con mate, bueno si observan con cuidado se darán cuenta que nuestra cara tiene muchas similitudes con figuras geometricas, por ejemplo: nuestro rostro es similar a un ovalo, los ojos a esferas y la nariz a una piramide con base triangular; me parecio interesante porque no me había puesto a anlizar esto nunca.. ¿Qué otras similitudes encuentras en nuestro rostro o cuerpo con figuras geométricas? Comentaaaaaa!

Publicado por: Sofía Nieto

lunes, 25 de octubre de 2010

Curiosidades matematicas

Unas curiosidades matemáticas

Ya bueno aqui les dejo unos números curiosos que encontre ;-)

Pirámides de números:
1 x 9 +  2 = 11                                                    
12 x 9 + 3 = 111                                                
123 x 9  + 4 = 1111                                           
1234 x 9 + 5 = 11111                                       
12345 x 9  + 6 = 111111                                 

123456 x 9 + 7 = 1111111                             
1234567 x 9 + 8 = 11111111                        
12345678 x 9 + 9 = 111111111
 _____________________
1 x 8 + 1 = 9                                                                         
12 x 8 + 2 = 98                                                              
123 x 8 + 3 = 987                                                        
1234 x 8 + 4 = 9876                                                 
12345 x 8 + 5 = 98765                                         
123456 x 8 + 6 = 987654                                   
1234567 x 8 + 7 = 9876543                            
12345678 x 8 + 8 = 98765432                     
123456789 x 8 + 9 = 987654321               
 _______________________
Números especiales: el 37.                         
37 x 3 = 111                                                           
37 x 6 = 222                                                           
37 x 9 = 333                                                          
37 x 12 = 444                                                         
37 x 15 = 555                                                        
37 x 18 = 666                                                       
37 x 21 = 777                                                          
37 x 24 = 888                                                         
37 x 27 = 999   
¿ Cuál es el Número menor de mil con más letras?
 Cuatrocientos cincuenta y cuatro (454) , 29 letras.
¿Qué Número tiene el mismo número de letras que el  que expresa?
 El cinco (5) , 5 letras.

Publicado por: Giorgio Baglietto